

EPFL

MICRO-517

Optical Design with ZEMAX OpticStudio

Lecture 3

10.10.2022

Ye Pu

Sciences et techniques de l'ingénieur École Polytechnique Fédérale de Lausanne CH-1015 Lausanne

Outline

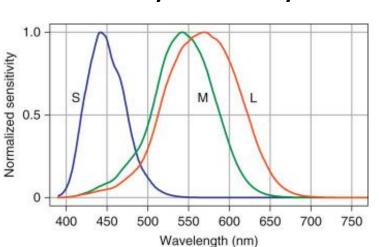
Theory

- Process of optical design
- Paraxial model of typical optical instruments
- Paraxial lens design layout and ray tracing

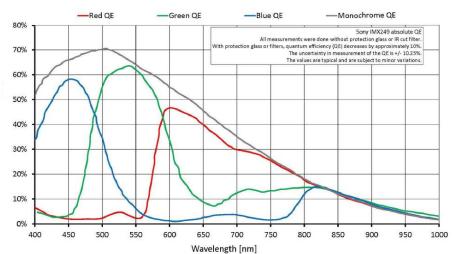
ZEMAX Practice

- Paraxial design layout and ray tracing
- Functional verification

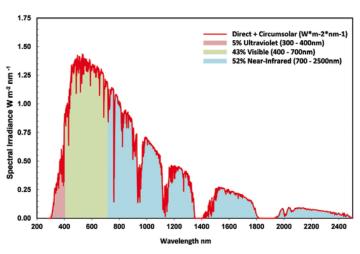
The Optical Design Process


LIL LIL LIL STI MICRO-517

Specification


Spectral Transmission Requirement

Typical normalized spectral sensitivity of human eye



30.09.24

Typical spectral sensitivity of color image sensor

Solar spectral irradiance

Specification

Imaging

General

- Focal or afocal design
- Type and size of the object
- Spectrum and illuminance (irradiance) of the light
- Distance of the object
- Size and sensitivity of the detector

Image quality

- Resolution (periods per mm) as a function of field radius and defocus
- Contrast in relation to detector noise
- Depth of field
- Tolerances on field curvature and distortion
- Tolerances on illumination inhomogeneity
- Telecentricity

Specification

Paraxial Parameters

Microscope objective

- Field diameter
- Aperture angle or numerical aperture
- Magnification
- Working distance (lens-object)
- Tube length (lens-image distance)
- Length and diameter of the objective

Camera and telescope

- Focal length
- Back focal length (working distance)
- F-number
- Field angle

Specification

Specification

Layout

Thin-lens Predesign

Surface Model

Optimization

Tolerancing

Environmental and Economical

- Physical: temperature, pressure, humidity, shocks, vibrations, dust, radiation, ...
- Chemical: reactants, corrosion, solvents, ...
- Biological: fungi, material toxicity, ...
- Economical: cost, market price, batch size, delivery date, packaging, transport, ...
- Limits in size and weight (potable and space applications)

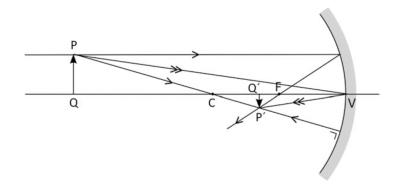
Layout

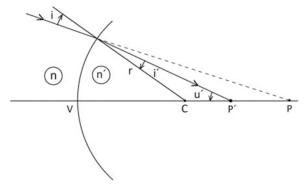
Specification Layout Thin-lens Predesign Surface Model Optimization Tolerancing

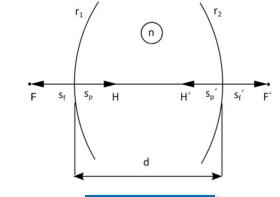
- Paraxial phase of a design
- Quicker raytracing computation
- Functional verification
- Corrects primary chromatic aberrations
- Third-order aberrations left out except field curvature
- Complex system can involve lots of algebra

Layout

Specification


Layout


Thin-lens Predesign **Surface** Model

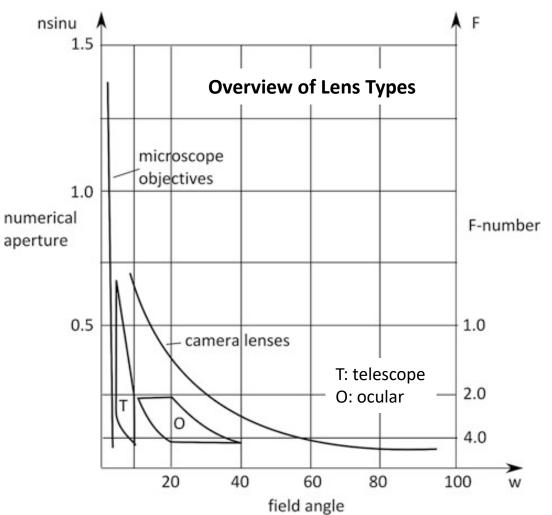

Optimization

Tolerancing

Image Equations Review

Spherical Mirror

$$\frac{1}{s'} + \frac{1}{s} = -K \qquad K = -\frac{2}{r} \qquad \qquad \frac{n'}{s'} - \frac{n}{s} = K \qquad K = \frac{n' - n}{r}$$


Spherical Refractive Surface

$$\frac{n'}{s'} - \frac{n}{s} = K$$
 $K = \frac{n' - r}{r}$

Single Lens

$$\frac{1}{s'} - \frac{1}{s} = K$$

$$K = (n-1) \left[\frac{1}{r_1} - \frac{1}{r_2} + \frac{(n-1)d}{nr_1r_2} \right]$$

Scale factor

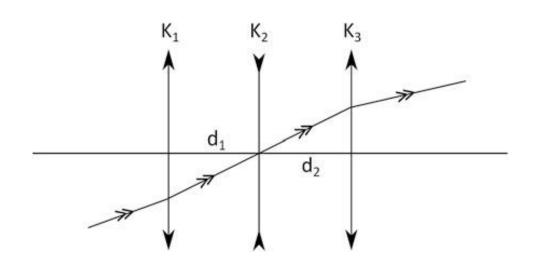
Focal length acts as the scale factor for the system to be designed

$$K = \frac{1}{f} = \frac{1}{h_1} \sum_{i=1}^{k} h_i K_i$$

When a system is scaled by a factor p:

- Focal length: $f \rightarrow pf$
- Radii: $r_i \rightarrow pr_i$
- Distances: $d_i \rightarrow pd_i$
- Aperture angles: $u_i \rightarrow u_i$
- Field angles: $W_i \rightarrow W_i$

Field curvature (Petzval sum)


$$P = \sum_{i=1}^{k} \frac{K_i}{n_i}$$

Telescope, microscope: P < K

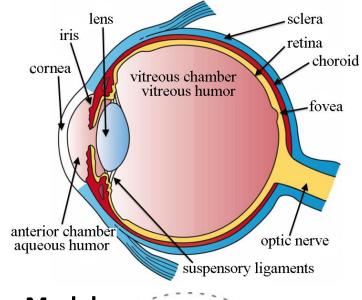
 $P = \sum_{i=1}^{k} \frac{K_i}{n_i}$ Photographic lens: $P < 0.2K \sim 0.4K$

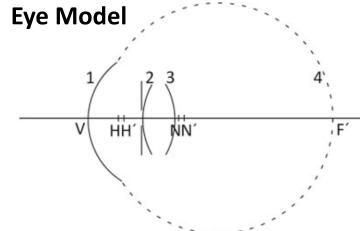
Lithography objective: no tolerance

- Height of marginal ray at surface i
- Height of chief ray at surface i
- Abbe number at surface i

$$V = \frac{n_d - 1}{\left(n_F - n_C\right)} \quad \begin{array}{ll} n_d & \text{Helium d-line (588 nm)} \\ n_F & \text{Hydrogen F-line (486 nm)} \\ n_C & \text{Hydrogen C-line (656 nm)} \end{array}$$

Longitudinal chromatic aberration (LCA) **Transverse chromatic aberration (TCA)**

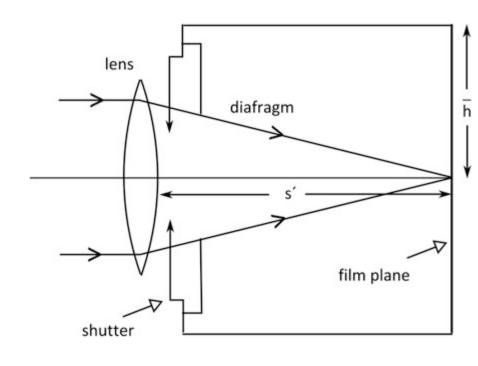

$$C_1 = \sum_{i=1}^{k} h_i^2 K_i / V_i = h_1^2 K / V_s$$


$$C_1 = \sum_{i=1}^k h_i^2 K_i / V_i = h_1^2 \ K / V_s$$
 Equivalent Abbe number
$$\frac{K_s}{V_s} = \sum_{i=1}^k \frac{K_i}{V_i} \quad K_s = \sum_{i=1}^k K_i$$

$$C_2 = \sum_{i=1}^k h_i \overline{h}_i K_i / V_i$$

LILL STI

Typical Optical Instruments | Human Eye

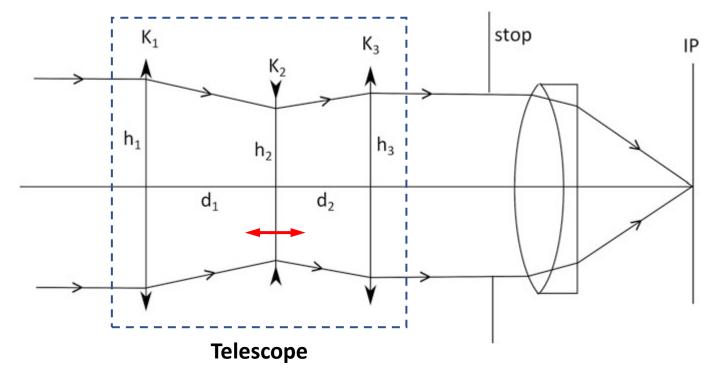


- Cornea: \sim 50 µm thick, approximately spherical, curvature $r \sim$ 7.8 mm (average)
- Aqueous humor: n ~ 1.336
- Crystalline Lens: ~7 mm behind the cornea, n ~ 1.386 (outside) to 1.406 (center), thickness and curvature controlled by ciliary muscle, power ~17 to 25 diopters
- Iris diaphragm: diameter ~2 to 8 mm
- Vitreous humor: n ~ 1.336.
- Retina: ~25 mm behind the cornea, curvature r ~ 12 mm
- Resolves ~0.1 mm at a distance of 250 mm

	#	Radius	Distance	Index
ОВЈ	0	_	Ş	1
	1	7.8	7	1.336
	2	10.0	3.6	1.413
	3	-6.0	13.4	1.336
IMA	4	-12.0	_	_

LIL GL LIJ STI

Typical Optical Instruments | Camera

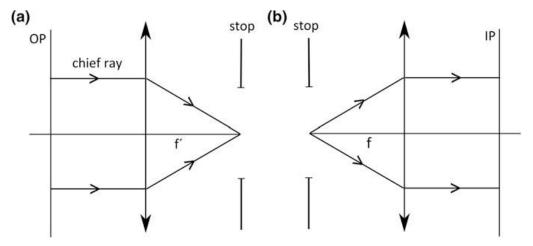

$$\frac{1}{s'} = \frac{1}{s} + \frac{1}{f}$$

F-number F # = f'/DDepth of field (focus) $\Delta z = \pm \Delta y \cdot F \#$

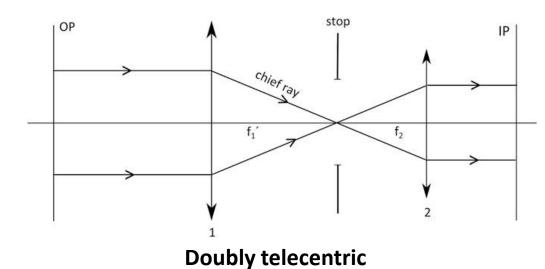
- Huge variety of lens designs
- 30 period/mm standard resolution for modern camera lens

LIL LIL LIL STI

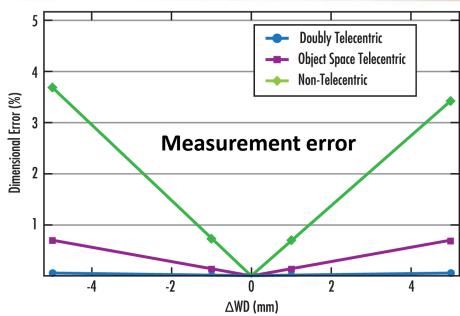
Typical Optical Instruments | Zoom Lens


For telescope $h_1K_1 + h_2K_2 + h_3K_3 = 0$ $u_1 = 0$ $u_2 = -h_1K_1$ $u_3 = h_3K_3$ $h_2 = h_1(1 - K_1d_1) = h_3(1 - K_3d_2)$

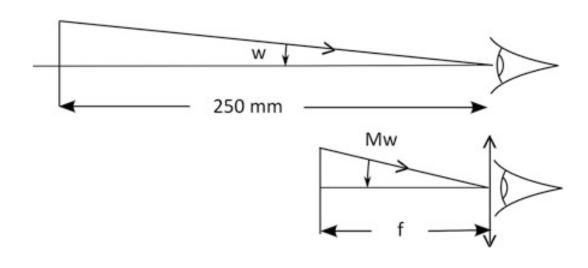
Angular magnification

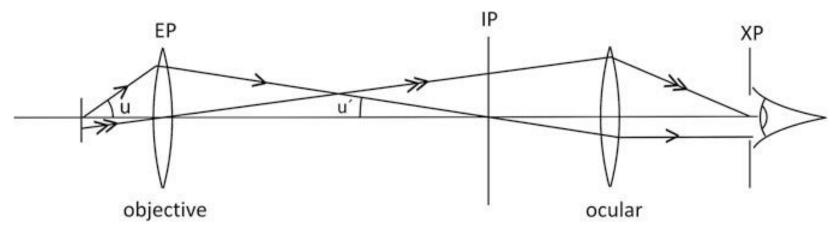

$$M = \frac{h_1}{h_3} = \frac{-K_3}{K_1 + K_2 - \frac{d_1}{d_1} K_1 K_2}$$

LIL LIL LIL STI


Typical Optical Instruments | Telecentric Lens

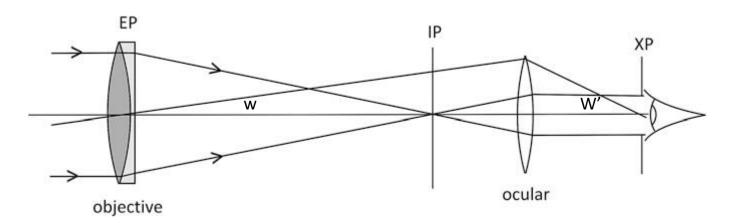
Object space telecentric Image space telecentric




Typical Optical Instruments | Magnifier

Angular magnification
$$M = \frac{250}{f}$$

Typical Optical Instruments | Microscope

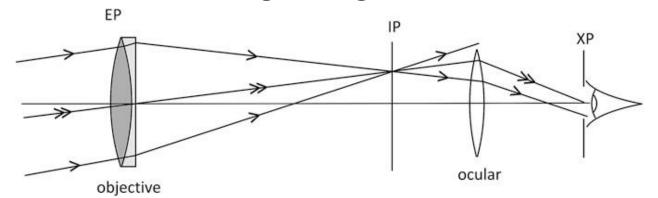

Angular magnification
$$M=M_{ob} \frac{250}{f_{oc}}$$
 where M_{ob} is linear magnification of objective

- Objective design is the key
- "Infinity-conjugated" objective
 - Objective plane at front focal plane
 - Require a tube lens for image formation

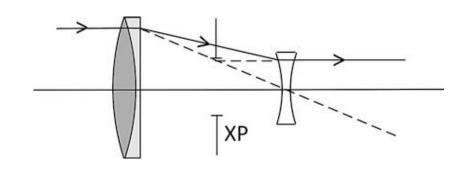
Typical Optical Instruments | Telescope

Keplerian telescope

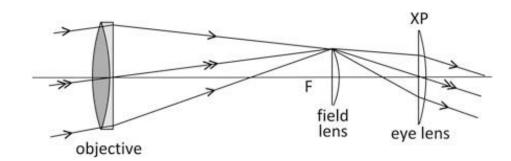
Linear magnification $\,M_L = -\,f_2/f_1\,$ Angular magnification $\,M_A = -\,f_1/f_2\,$

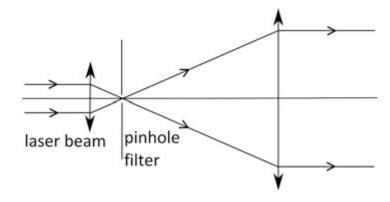

Lagrangian invariant

$$M_A = 1/M_L$$



Typical Optical Instruments | Telescope


Vignetting


Galilei's telescope

Vignette correction with field lens

Laser beam expander

Homework

Objective

- Practice ZEMAX ray tracing with paraxial models
- Familiarize yourself with principles of various optical instruments
- Understand functional verification of your design
- 1. Design a paraxial telescope of magnification M = 100 and objective lens aperture diameter of 300 mm. Note that Zemax OpticStudio always works with semi-diameter. Use an appropriate field lens to improve vignetting.
- 2. Design a paraxial microscope of magnification M = 100. The microscope objective works at "infinite-conjugate" (object at the front focal plane). Use a tube lens of 200 mm.
- 3. Design a paraxial doubly telecentric lens with magnification M = 0.1. Use field heights of 0, 30, 100 mm at an object distance of 200 mm.
- 4. Design a paraxial zoom lens with the range of angular magnification M = 2 5. Assume object at infinity. Use field angle of 0, 3, and 5 degrees. Use another paraxial lens as the last focusing lens.

You should submit the ZEMAX design files (.zos). No need to generate spot diagram since we are in a paraxial regime. However, it may help you diagnose design problems at various stages.